
Performance Modeling for Software Integration

Kang G. Shin and Shige Wang
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

email:fwangsg,kgshing@eecs.umich.edu

Abstract — Software construction with reusable compo-
nents and legacy code has proven useful for fast and low-cost
software development in many real world applications. How-
ever, since this methodology is often applied to domains with
stringent performance and resource constraints such as em-
bedded systems, its ignorance of non-functional constraints
makes it very difficult and expensive to meet the constraints
at a post-integration stage.

In this paper, we propose a new methodology for (i) in-
tegrating a performance model with functional models dur-
ing the design phase, and (ii) using the performance model
parameters along with functional components throughout all
SW development phases that usually rely on different tools.
The performance model is constructed by examining the
performance requirements and characteristics of functional
components and their interaction patterns, and by associat-
ing them with functional components and patterns as per-
formance parameters. The advantage of such modeling lies
in that the performance model is easily integratable with
functional components and can be reused just like reusable
functional components. The proposed performance model-
ing, therefore, solves the cross-cutting issues of performance-
aware functional design, and makes the consistent perfor-
mance information available across the different phases of
software lifecycle. The main technical issues for such per-
formance modeling include how to partition the performance
model along the function models and software architecture,
how to determine and systematically measure the perfor-
mance parameters of software components in each partition
for reuse in constructing different performance models, and
representing the performance parameters for use across dif-
ferent tools, and building a performance model for design-
time analysis and runtime QoS management.

1 Introduction

New software engineering technologies such as component-
based software integration [6] and pattern-oriented software
architecture [3] have been used in many real world applica-

tions, and proved beneficial for fast and low-cost software
development. However, recent practices of using these tech-
nologies for performance-constrained applications, such as
networked multimedia and embedded controls, have shown
that only limited benefits can be gained from using these
technologies alone. One of their main difficulties is that
these applications have to interact with the physical world,
and are, therefore, subject to stringent physical performance
constraints. These constraints are traditionally hidden, or
abstracted away, and hence left unaddressed by the above-
mentioned SW development technologies. Models, design
methods, and architectures used in current practices are
geared towards functionality with little attention paid to the
non-functional constraints; that is, they focus only on func-
tional partitioning, design, implementation and integration.
Such a design and integration views performance issues as
implementation issues, and addresses them by simulation in a
later phase of the development, which may be too late and/or
too costly to change the design if the implementation can-
not meet the performance requirements. When a component
is reused in software integration, only its functionality and
the corresponding interfaces are reused. Such reuse will not
be feasible if the performance constraints change, which are
common for embedded real-time systems. On the other hand,
performance analysis is carried out in an ad hoc way, and is
normally viewed as an art, not an engineering process [4].
Thus, the results obtained vary dramatically from engineer
to engineer, depending on the issues he is interested in, and
methodologies used to validate the performance.

All of the above issues require a performance model that
can capture non-functional aspects and can be used along
with functional components throughout the entire software
development cycle from the system requirements specifica-
tion to system design, implementation, testing, even runtime
analysis and reconfiguration. To this end, we propose an ap-
proach to modeling system performance of each individual
reusable component as a set of performance parameters at
each level associated with the corresponding functionalities.
The performance parameters are designed to be measurable
and stable in a given environment, and are viewed as static

1

properties of functional components. The performance model
of SW integration can then be constructed using the per-
formance parameters of constituent functional components,
component execution environments and their interaction pat-
terns in the integration. Modeling performance this way en-
ables a designer to reuse the performance model with func-
tional components/subsystems (by choosing different imple-
mentations and interaction patterns for the same functions).
Such performance parameters can also be used across differ-
ent tools in a tool chain despite the fact that the different tools
may represent different component functions and interfaces.

The rest of the paper is organized as follows. Section 2
describes the performance model and issues related to its
construction, including determination of the performance pa-
rameters for each component, measurement of the parame-
ters under some representative environment, and their spec-
ification with the components for reuse and analysis. Sec-
tion 3 discusses software integration using the proposed per-
formance model to meet the application performance require-
ments. Section 4 describes our previous experiences on
performance-constrained software development, and identi-
fies the remaining research issues to complete performance
modeling. The paper concludes with Section 5.

2 Modeling Performance for Software
Integration

Performance requirements are usually expressed as some
functional constraints and properties that will ensure the dy-
namic behaviors of functions to be correct and timely. So,
we can treat the performance model of integrated software as
a combination of the performance of individual components
used in the integration. We describe the performance of each
component with parameters. To reuse the performance infor-
mation and build the performance model of integrated soft-
ware with each component’s performance, the performance
parameters should have the following properties.

� Performance information should be included in the com-
ponent model as attributes associated with its function-
alities. Current designs are basically a process of parti-
tioning end-to-end functions into small pieces, and map
them to the functions supported by some components.
Existing reusable software components are all designed
and implemented based on their functionality, which is
a primary factor for component selection and reuse. So,
performance information has to be used along with those
components that will meet the intended functional re-
quirements.

� Performance information should be expressed in some
abstract and general form so that it may be used for dif-
ferent tools in a tool chain throughout the different de-
velopment phases. As software gets more complicated,

it is difficult to use only one tool throughout all devel-
opment phases. Multiple tools with different underlying
assumptions are usually used to design and analyze dif-
ferent aspects of the system. Reusable components in
different tools may be represented in different formats,
and hence, each needs a different representation of per-
formance information. For example, the timing infor-
mation in a tool for design may be represented as an
end-to-end deadline, while in a tool for implementation
it may be represented as a rate of execution.

� The performance model should include each compo-
nent’s performance characteristics (such as its worst-
case execution time and memory usage). Such perfor-
mance characteristics can usually be measured on a plat-
form, independently of its interactions with other soft-
ware components. The ability of independent/isolated
measurement ensures the performance of a component
is self-contained and can be reused in different software
integrations. The deployment-related parameters of a
performance model can be derived through analysis us-
ing the component performance characteristics together
with their interactions. For example, the blocking time
of a component’s execution can be derived from the ex-
ecution time of a component itself and the sum of exe-
cution times of other components it has to wait for.

� The performance model should also capture perfor-
mance requirements. The performance requirements of
a component impose constraints (such as deadlines) on
the component, which has to be met for the system to
behave correctly. Such performance requirements usu-
ally depend on the component’s context, and varies from
configuration to configuration. It is also common that
requirements change dynamically during runtime when
the execution mode changes. So, unlike the perfor-
mance characteristics which are fixed for a given plat-
form, component performance requirements should be
externally adjustable to achieve different levels of per-
formance.

To build a performance model with all of the above proper-
ties, we model components to have not only functional spec-
ifications such as their behaviors and interfaces, but also per-
formance specifications, as shown in Figure 1. Note that
components can be any reusable elements in software design
and implementation, including application models and code,
patterns of component interactions and communications, and
the underlying infrastructure services (middleware, OS, and
network protocols).

In such a structure, each component can perform several
functions by accessing the corresponding function interfaces
(e.g., method calls and event triggers). Each function has a
set of performance parameters. Some of the parameters are
static attributes representing the performance characteristics,

2

Attributes

Requirements

Parameters
Performance

����
����
����

����
����
����

���
���
���

���
���
���

Function/
Behavior

Attributes

Requirements

Parameters
Performance

���
���
���

���
���
���

���
���
���
���

���
���
���
���

Function/
Behavior

Attributes

Requirements

Parameters
Performance

���
���
���

���
���
���

����
����
����

����
����
����

Function/
Behavior

......

function
interface

performance
interface

Figure 1: The reusable component structure with perfor-
mance parameters.

while others are the requirements representing performance
constraints. Both can be changed by accessing the corre-
sponding performance interfaces.

An assumption for software integration using this model is
the existence of implementation polymorphism, meaning that
each functional component should have multiple implemen-
tations with different levels of performance. To reuse perfor-
mance parameters in multiple software integrations, the fol-
lowing issues need to be addressed.

Determine performance parameters. Which perfor-
mance parameters can be reused and customized, should be
determined when a component is designed. Parameters for
performance attributes usually depend on the nature of func-
tions and target analysis. For example, latency is a proper
attributes for communication components, while execution
time is more suitable for computation components for timing
analysis. It may also depend on the performance attributes
of the underlying support. Parameters of performance
requirements usually depend on component interactions and
higher-level performance requirements. Since both types
of parameters are highly domain-specific, the component
designer in a particular domain would be able to determine
them based on which products/applications will use the
component and how it can possibly be used.

Performance parameter measurement. After determin-
ing the parameters essential for constructing the performance
model for integration, the associated performance attributes
can be measured and reused. The measurements should be
taken in the context where the component can possibly be
used, including different configurations of the underlying ser-
vices and possible interactions with the components at the

same layer of hierarchy.1 The parameters should be measured
in a systematic manner with representative codes to ensure
that the results are reproducible and comparable. Results of
these measurements should be represented in a way that the
context will be used as a parameter when the performance
attributes are derived.

Hierarchical performance model construction. Compo-
nents are usually integrated hierarchically to reduce com-
plexity. Consequentally, the performance model of integrated
software should also be constructed hierarchically using the
performance parameters of each component. The perfor-
mance parameters of a higher-level component can be derived
from a combination of performance parameters of all con-
stituent lower-level components, as shown in Figure 2. Exist-
ing research [1, 2] has demonstrated that such a hierarchical
model can be constructed and will be beneficial, although the
proposed models are either too low-level (such as at instruc-
tion set level) to be useful in practice, or constructed in an ad
hoc way for a target application.

Application

Hardware Architecture

Composition, behaviors and services

Timer, scheduler and communication

System Software

CPU and memory architecture

Application
Response time
Execution rate
Message delay

Bus speed and width
Memory and cach speed and size

Hardware Architecture
Clock rate, CPI and pipeline stages

System Software
Timer overhead and jitter

Scheduling overhead and latency
Communication delays

Figure 2: Deriving performance parameters from lower-level
components.

Performance parameters for formal verification.
Since performance-constrained applications are usually
mission/safety-critical applications, formal verification is
desired to ensure their correctness. Modeling the perfor-
mance of components as a set of performance parameters
makes it easy to integrate the performance information with
formal methods in analysis. The behavioral model of a
reusable component can be constructed using a basic model
(e.g., continuous or discrete event) with the performance
parameters added to it. The verification and analysis can
then be done based on the performance parameters of each
component. On the other hand, the results proven after
verification can also be mapped to proper performance
parameters of each component for implementation.

1A typical hierarchy consists of operating system, middleware, and ap-
plication.

3

3 Software Construction with Perfor-
mance Model

Performance requirements of software are normally given as
the end-to-end performance constraints derived from physical
constraints during the system design. For example, compu-
tation associated with the sensing of an object flying into an
area, determination of its identity as an enemy missile/fighter
jet, and launching of an anti-missile should be done within
a bounded timeD. In the current describe-and-synthesis de-
velopment process [7], software functions are partitioned ac-
cording to some criteria, and then integrated by choosing
proper existing components that perform the desired func-
tionality, and then linking them together. Since there is no
performance information associated with components in cur-
rent component design and implementation, the performance
evaluation of the integrated software heavily depends on tra-
ditional ad hoc simulations.

Software construction using the proposed performance
model in Section 2 along with the describe-and-synthesis pro-
cess will enable the performance analysis to start as early as
in design phase, hence eliminating or reducing the develop-
ment cost due to error detection in simulation at a later stage.
One approach to detecting a performance failure before im-
plementation is to use performance-proven integration. In
this approach, after components are selected and integrated to
satisfy the functional requirements, the performance model
can be constructed, and performance analysis is conducted
based on the model to verify the satisfiability of the perfor-
mance constraints. Once the constraints are all satisfiable,
the system can be implemented with selected components,
and the integrated software is guaranteed to be correct in both
functionality and performance. Otherwise, changes have to
be made by either re-selecting components with different per-
formance numbers or re-organizing components using differ-
ent interaction patterns with different performance figures.

An alternative to software construction using the perfor-
mance model is performance-directed partitioning and com-
ponent selection. Instead of partitioning the system purely
based on functionality, the partitioning can be done with a
combination of both function and performance considera-
tions. Once a subsystem is generated, a set of performance
sub-constraints for the subsystem are also generated. Then,
components and implementations can be selected depending
on whether they will meet the sub-constraints or not. Such an
approach may be suitable for applications with pre-defined
performance constraints for some subsystems.

In both the software construction approaches, perfor-
mance parameters are reused. The performance model (or
part thereof) is reused as components/integrations are reused,
or the same application performance requirements are reused.
Performance attributes are reused along with component
functions, while performance requirements are reused when
substituting a component in the same context. Unlike reuse of

performance attributes related only to one component, reuse
of performance requirements may imply use of the same soft-
ware architecture and patterns. With reuse of a partial or
whole performance model of integrated software, incremen-
tal or differential performance analysis is possible when only
part of the software is changed.

Modeling performance with component performance pa-
rameters also supports performance-aware software integra-
tion with multiple tools as a tool chain. In current complex
software development with multiple tools involved in differ-
ent development phases and used for designing and analyzing
different system aspects, performance information should be
able to flow from one tool to another without losing interest-
ing/useful information. Many existing research results have
shown that a meta-model is required for such a tool chain in-
tegration [5]. The performance parameters can be defined in
the meta-model and used for different tools.

4 Experiences and Unresolved Issues

Modeling the performance for use with software compo-
nents for integration is motivated by our previous experience
with manufacturing and embedded system SW design. We
have developed a reconfigurable software architecture for the
open architecture controllers since 1995. Although the re-
sults show that object-oriented modeling and separate be-
havior specification provide the end users more flexibility
in controller software design and implementation, meeting
the performance constraints was the most difficult and time-
consuming issue. More than a half of the development ef-
forts were made on performance verification and tuning in
machine tool controller software to ensure timely completion
of all critical system operations, even on a resource-rich plat-
form. The root cause of this was the lack of performance
information for reusable components; the performance con-
straints have to be checked in an ad hoc case-by-case way
after all functions are implemented. So, an analytic model
with systematically-measured performance parameters will
help reduce the development time significantly in such soft-
ware construction. The preliminary results of our ongoing
model-based real-time embedded software integration have
indicated that a reusable performance model will help accel-
erate software development. The performance analysis algo-
rithms and methodologies we have developed and integrated
into the GME environment, have used some of the perfor-
mance parameters of reusable components to verify the cor-
rectness of design, and support automatic performance pa-
rameter value assignments. These performance parameters
have also been defined in the meta-model that will be used
across tools in an integrated experiment.

Although modeling the performance of components and
reusing the model along with the functional components is a
promising approach to fast and correct software construction,

4

there remain several issues that warrant further research. One
of them is the need to develop methods for constructing the
performance model for integrated software. The difficulty
arises from the complex relationships between the compo-
nents in a real application. Such relationships include all
types of interactions of the underlying services and mech-
anisms, data/information dependencies among the compo-
nents at the same level as well as between lower and higher
levels. According to our experience in modeling OS ser-
vices, interactions between components can become arbitrar-
ily complicated due to the inter-dependencies among compo-
nents. Consequently, the performance of a component may
have cascaded dependencies with multiple other components.
This too will make it complicated to construct in the perfor-
mance model. Although component interactions usually fol-
low some patterns, the performance of software patterns is
neither well-defined nor clear in current research.

Another issue is related to using the performance model
with heterogeneous models with different modeling assump-
tions such as synchronous/asynchronous communication,
time-driven or event-driven operation, etc. Depending on
the designer’s interest, the software can be modeled using
an object-oriented model such as UML class diagrams, or
a formal behavior model like finite-state machines, or some
continuous function blocks such as block diagrams in Mat-
lab/Simulink. Due to the different characteristics and the un-
derlying assumptions of different models, performance pa-
rameters may have different formats to be used for these mod-
els. Transformation of performance information from one
format to another while maintaining the consistency between
performance parameters is another issue that needs to be stud-
ied.

A limitation of our performance model is that it can only
be constructed when all performance parameters are avail-
able. The performance analysis and verification for a model
with only partial performance information will have almost
the same difficulty as the case of no information because a
performance model with partial information doesn’t help at
all in analysis. This implies that some form of implementa-
tions have to exist for all components before making the per-
formance analysis, which is not always the case. Although it
is much better than ad hoc simulation, performance analysis
and verification based on a model with partial information is
still desired.

Some other issues such as developing toolkits for system-
atic performance measurements, representing a performance
model for online decision and reconfiguration, and integra-
tion of performance modeling with the meta-model should
also be studied to capitalize on the performance model.

5 Conclusions

Performance-aware software development is critical for fu-
ture software construction in many application domains,
such as distributed embedded systems and real-time con-
trol systems. The software development will be acceler-
ated if the performance of product can be specified and an-
alyzed during early phases of development, and the infor-
mation can be passed between different development stages
that use different tools. We propose performance modeling
with the parameters associated with functional components
and patterns in order to achieve early performance analysis
and reuse in software integration. The performance model
of integrated software using the proposed approach can be
constructed hierarchically at different function levels with
systematically-measured performance parameters of compo-
nents. The model can facilitate both early phase performance
analysis and component selection & integration. Although
our experiences have shown that such a performance model
would accelerate software development without losing soft-
ware quality, further research needs to be done on such is-
sues as performance for different software patterns, informa-
tion transformation among heterogeneous models, and model
construction with partial performance information.

References

[1] K. Bradley. A framework for incorporating real-time analysis
into system design processes. PhD thesis, Department of Elec-
trical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, Pennsylvania, December 1998.

[2] A. B. Brown and M. I. Seltzer. Operating system benchmark-
ing in the wake of lmbench: A case study of the performance of
netbsd on the intel x86 architecture. InProceedings of the 1997
ACM SIGMETRICS Conference on Measurement and Model-
ing of Computer Systems, pages 214–224, June 1997.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons, 1996.

[4] R. Jain. The Art of Computer Systems Performance Analy-
sis: Techniques for Experimental Design, Measurement, Sim-
ulation, and Modeling. John Wiley & Sons, 1991.

[5] G. Karsa,et al.Model-integrated system development: models,
architecture and process. InProceedings of the 21st Annual
International Computer Software and Application Conference
(COMPSAC’97), Bethesda, MD, August 1997.

[6] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley Publishing Company, 1997.

[7] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong.Specification
aand Design of Embedded Systems. Prentice Hall, 1994.

5

